

视觉对抗样本迁移性与大模型安全探索

北京交通大学

先进轨道交通自主运行全国重点实验室

CONTENTS

2 迁移攻击

■ 智能技术在关键领域应用的深度和广度不断增加

自动驾驶

无人货物运输

航空航天

轨道异常检测

交通监控

司法取证

医疗诊断

金融交易

AI模型的安全性是智能化技术在关键领域落地的"最后一公里"

■ 对抗样本横跨数字-物理空间,对关键领域AI应用形成实质威胁

从数字域向物理域迁移

对抗样本可实现跨模型架构迁移 图像分类 Class Bird Ball Car MLP Head 战斗机 Transformer Encoder Patch + Position Embedding * Extra learnable [class] embeddin 干净样本 State of the second sec Feature m CNN [2012] ViT [2020] loss: (P2) PI $-p_2 \log p_1$ == sg softmax softmax 乌云 centering cma student $g_{\theta s}$ teacher go \mathbf{x}_2 对抗样本 $I_N T_1 = I_N T_2 = I_N T_3$ DINOv2 [2023] CLIP [2021]

视觉表示学习模型能力不断提升,对抗性安全脆弱性依然存在

对抗样本可实现跨数据域、跨场景迁移

ImageNet -> Non-ImageNet 预训练模型迁移攻击

未知训练数据模型黑盒攻击 真实系统 -> 真实攻击

对抗样本跨学习任务普遍存在

普遍存在的对抗样本引发广泛的安全威胁,目前没有十分有效的防御方法

- ・ 2023年首届全球人工智能安全峰会,包括中、美在内的28个国家共同签署了《布莱切利宣言》
- 2024年第二届全球人工智能安全峰会,27个国家签署《首尔宣言》,16家领先大模型公司共同签署 《前沿人工智能安全承诺》
- 2024年6月20日, OpenAl 前首席科学家 Ilya Sutskever声明创立「安全超级智能」 (Safe SuperIntelligence, SSI) 。该公司的目标和产品非常明确、单一:追求安全的超级智能

各国政府与社会高度关注AI安全,对抗攻击研究具有重要的研究意义和应用价值!

CONTENTS

2 迁移攻击

对抗样本迁移性研究发展十年

 $x_{t+1}^* = ext{clip}ig(x_t^* + lpha \cdot ext{sign}ig(
abla_x L(x_t^*, y, heta)ig)ig)$

沿符号梯度方向迭代,容易导致样本<mark>陷</mark> 入**较差局部最大解并过拟合模型**,限制 了对抗样本的跨模型迁移性。

■ 输入数据引导的对抗攻击

数据增强可提升模型泛化能力,类似的,输入样本进行数据增强也可以提升对抗样本迁移性

其中T代表了数据增强操作,可以为随机裁剪、填充、随机缩放、随机平移、随机图片插值等

- [ICML 18] EOT、 [CVPR 19] DIM、 [ICLR 19]SIM、 [CVPR 19]TIM
- [CVPR 21] CTM、[ICCV 21]Admix、[ICCV 23]SIA、[ICLR 22] TAIG、[CVPR 23]PAM

数据引导的对抗样本生成方法通过增加数据多样性来提高对抗样本的迁移性,操作简便。 然而,该类方法需要为每个增强的样本单独计算梯度,产生了<mark>额外的计算成本</mark>。

■ 优化算法引导的对抗攻击

BIM方法会导致陷入较差局部最大点并过拟合模型,该类方法采用收敛性质更好的优化算法以逃离局部最大解。

其中A代表了优化算法,可以为动量加速、涅斯托洛夫加速、方差缩减、随机方差缩减、随机权 重平均高斯、梯度正则化等

- [CVPR 18] MIM、 [ICLR 19] NIM、 [CVPR 21] VMI、 [BMVC 21] EMI、
- [CVPR 22]SVRE、 [NIPS 22] RAP、 [NIPS 23] PGN、 [ICML 24] CosPGD、 [CVPR 24] ANDA

优化算法引导的对抗样本生成方法采用收敛性质更好的优化算法,确保生成过程更快收敛 并避免局部最优解,增强对不同模型的适应性。该类方法<mark>存在陷入尖锐解的风险</mark>。

■ 替代模型引导的对抗攻击

损失景观更平坦的替代模型可以减少对抗样本对模型的过拟合。此类方法通过修改模型参数,使其更加平滑。 $x_{t+1}^* = \operatorname{clip}\left(x_t^* + \alpha \cdot \operatorname{sign}(\nabla_x L(x_t^*, y, \theta))\right)$ $x_{t+1}^* = \operatorname{clip}\left(x_t^* + \alpha \cdot \operatorname{sign}\left(\nabla_x (L(x_t^*, y, \mathcal{M}(\theta)))\right)$

其中M代表了替代模型相关操作:贝叶斯边际化、丢弃层、对抗训练、模型平均、模型自 蒸馏,跳跃链接。

- [ICLR 19] SGM、[AAAI 20] GhostNet、 [ECCV 22] LGV
- [ICLR 23] MB、 [S&P 24] LittleRobust、[CVPR 24] SASD-WS

替代模型引导的生成方法通过修改模型结构或集成学习提升损失函数的平坦性,增强对抗样本 的迁移性。然而,这类方法需要<mark>较高的计算成本,对特定模块的依赖性强</mark>(例如残差连接)。

综合考虑<mark>输入数据与优化算法,</mark>设计了多重渐近正态分布攻击方法(Asymptotically Normal Distribution Attack, MultiANDA),利用随机梯度上升的渐近正态性,通过采集<mark>优化轨迹信息,</mark>在增强 后的数据上估计混合高斯后验分布,捕获对抗样本的分布特性,进而提升对抗攻击的准确度。

干净图片样本+微小对抗噪声 → 对抗样本

实验验证迭代优化过程生成的对 抗噪声形成稳态分布,服从混合 高斯分布的对抗噪声。

如何估计该后验分布?

Fang Z, Wang R, Huang T, et al. Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 24841-24850.

后验混合高斯后验分布的刻画方法:

$$\Delta \delta(z) \sim \mathcal{N}(0, C(z)), \quad \hat{\delta}_S(z) \sim \mathcal{N}(\delta(z), \frac{1}{n}C(z))$$

> 为了充分估计后验分布,我们引入数据增强增加轨迹信息:

 $\mathcal{S} = \{ \operatorname{AUG}_i(x_{adv}^{(t)}) \}_{i=1}^n$

▶ 计算增强扰动 $\delta_{i}^{(t)}$:

 $\delta_i^{(t)} =
abla_{x^{(t)}} \mathcal{L}(extsf{AUG}_i(x_{adv}^{(t)}), y)$

▶ 计算平均值并存储梯度的偏差: (估计后验分布) $\bar{\delta}^{(t+1)} = \frac{(t \times n)\bar{\delta}^{(t)} + \sum_{i=1}^{n} \delta_{i}^{(t)}}{(t+1) \times n}$ APPEND_COLS(**D**, { $\delta_{i}^{(t)} - \bar{\delta}^{(t+1)}$ }), i = 1, ..., n

Fang Z, Wang R, Huang T, et al. Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 24841-24850.

实验结果

\triangleright	不同黑盒模型上的攻击成功率	(标准模型)
------------------	---------------	--------

A 44 1-	Inc-v3 ⇒										
Attack BIM TIM SIM DIM FIA TAIG NI-FGSM MI-FGSM VMI-FGSM	Inc-v3	ResNet-50	ResNet-152	IncRes-v2	VGG-19	Avg.					
BIM	100.0*	20.3	15.7	15.6	34.3	21.5					
TIM	64.3*	35.9	30.6	25.4	70.4	45.3					
SIM	100.0*	38.2	31.1	35.9	42.2	36.9					
DIM	100.0*	31.7	25.5	31.4	45.5	33.5					
FIA	98.3*	78.4	75.3	81.2	83.5	79.6					
TAIG	99.7*	53.3	45.9	56.7	54.2	52.5					
NI-FGSM	100.0*	40.0	35.2	39.9	56.9	43.0					
MI-FGSM	100.0*	40.2	35.1	40.3	57.1	43.2					
VMI-FGSM	100.0*	63.0	59.3	68.6	70.3	65.3					
VNI-FGSM	100.0*	62.4	58.7	67.7	69.7	64.6					
ANDA	100.0*	76.1	72.8	82.3	77.0	77.1					
MultiANDA	100.0*	79.2	76.0	84.5	78.8	79.6					

▶ 不同黑盒模型上的攻击成功率(防御模型)

Attack	1	Inc	-v3 ⇒			
Attack	Inc-v3 _{ens3}	IncRes-v2ens	HGD	NRP	NIPS-r3	Avg.
BIM	11.1	4.6	3.7	13.4	4.8	7.5
TIM	27.5	21.3	16.9	22.8	21.1	21.9
SIM	18.1	8.4	8.6	15.2	10.8	12.2
DIM	13.1	6.7	5.8	12.8	8.6	9.4
FIA	37.4	21.3	11.6	23.5	29.2	24.6
TAIG	38.0	23.9	22.8	29.6	28.5	28.6
MI-FGSM	18.3	9.0	5.5	15.7	12.0	12.1
NI-FGSM	18.6	8.6	6.2	15.3	12.2	12.2
VMI-FGSM	36.9	21.2	19.1	24.7	27.7	25.9
VNI-FGSM	36.4	22.0	18.9	25.3	27.4	27.1
ANDA	44.4	25.9	36.5	23.2	37.0	20.3
MultiANDA	54.4	36.7	52.8	24.3	46.9	29.9

结论: 1. 随机梯度上升的渐近正态分布能够有效近似对抗噪声的混合高斯后验分布

2. MultiANDA表现优于十种针对深度学习模型的最先进的黑盒攻击(无论有无防御加固)

Fang Z, Wang R, Huang T, et al. Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 24841-24850.

MultiANDA从后验分布估计角度,刻画了鲁棒的对抗样本空间,是否可以直接学习对抗子空间?

利用单纯形构建对抗样本子空间,通过样本局部平坦性和损失函数全局平坦性的量化指标,设计高效的 平坦对抗子空间攻击(Flat Adversarial Subspace Attack, FASA)方法。

▶ 求解优化问题: $g_{i}^{t} \approx \omega_{i}^{t} \cdot \nabla_{x^{t}} \mathcal{L}(x^{t}, y; \theta) - \lambda \cdot \frac{1}{N} \cdot \nabla f(\overline{\Delta}^{t})$ ▶ 更新对抗样本: $x_{i}^{t+1} = \operatorname{Clip}_{\mathcal{B}_{\epsilon}(x)} \left(x_{i}^{t} + \alpha \cdot \operatorname{sign}(\hat{g}_{i}^{t+1})\right)$ ▶ 四公式 四日
FASA与基准方法的损失Landscape可视化

▶ 理论证明

Theorem 1 (Expectation of Hessian/Vector Products) Given an adversarial example x^t and random vector v, the flatness measure can be approximately equivalent to Expectation of Hessian/Vector Products:

$$\nabla_{x^t} \mathbb{E}_v \left[\mathcal{L}(x^t + v, y; \theta) - \mathcal{L}(x^t, y; \theta) \right] \approx \mathbb{E}_v \left[\nabla_{x^t}^2 \mathcal{L}(x^t, y; \theta)^T \cdot v \right].$$
(6)

ANDA

Theorem 2 (The flat regularization terms reduces the Shapley interaction) The expected value of the Shapley interaction index within adversarial perturbations is lower at the t-th step with flatness-regularization than without it:

$$\mathbb{E}_{a,b}\left(I_{ab}\left(\delta_{reg}^{t}\right)\right) \leq \mathbb{E}_{a,b}(I_{ab}(\delta_{ori}^{t})),\tag{10}$$

PGN

FASA(Ours)

VMI

ANDA

PGN

FASA(Ours)

▶ 干净数据训练模型的黑盒攻击成功率

	Res-50	Inc-v3	VGG16	Dense121	ViT-B	DeiT-B	Swin-B
Attack			In	$c-v3 \Longrightarrow$			
BIM	20.0 ± 0.44	100.0±0.00*	34.5 ± 0.66	25.8 ± 0.30	9.7±0.24	8.0±0.21	7.5 ± 0.25
MI	41.1 ± 0.30	$100.0 \pm 0.00*$	52.5±1.19	47.9 ± 0.48	17.6±0.42	15.5 ± 0.38	11.6 ± 0.80
VMI	63.0 ± 0.54	$100.0 \pm 0.00*$	68.1±0.77	67.5 ± 0.59	25.3±0.36	27.6 ± 0.28	22.8 ± 0.38
ANDA	76.0 ± 0.05	100.0±0.00*	78.4 ± 0.00	81.6 ± 0.05	28.3 ± 0.00	30.8 ± 0.00	23.2 ± 0.00
PGN	82.5 ± 0.48	$100.0 \pm 0.00*$	82.0 ± 0.68	83.9 ± 0.44	41.2 ± 0.56	42.7 ± 0.66	34.8 ± 0.61
FASA	93.3±0.29	$100.0 \pm 0.00*$	92.0±0.48	94.3±0.44	53.2±0.37	57.1±0.65	48.4±0.80
Attack			Re	$es-50 \Longrightarrow$			
BIM	99.7±0.04*	32.7 ± 0.50	44.6 ± 1.05	40.9 ± 0.66	11.5 ± 0.43	9.2 ± 0.48	7.7 ± 0.26
MI	99.7±0.05*	59.5±0.57	65.1±0.94	68.7 ± 0.78	21.2 ± 0.44	21.4 ± 0.48	15.0 ± 0.11
VMI	99.8±0.00*	75.5 ± 0.21	76.8 ± 0.28	80.4 ± 0.54	49.4±0.52	29.8 ± 0.32	31.3 ± 0.24
ANDA	$100.0 \pm 0.00*$	96.2±0.00	89.8 ± 0.00	95.8 ± 0.00	40.7 ± 0.04	46.0 ± 0.00	37.7 ± 0.04
PGN	$100.0 \pm 0.00*$	87.5 ± 0.32	82.4±0.99	90.1 ± 0.69	41.8 ± 0.30	43.6 ± 0.61	34.3 ± 0.76
FASA	$100.0 \pm 0.00*$	95.6±0.38	92.8±0.50	97.0±0.19	57.9±0.85	57.1±1.03	45.4±0.61

▶ 防御模型的黑盒攻击成功率

	Inc-v3 _{ens}	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}	HGD	NIPS-r3	RS	Avg.
Attack			Ir	$nc-v3 \Longrightarrow$				
BIM	10.5	11.0	11.3	4.9	3.8	4.3	21.5	9.61
MI	23.9	18.2	17.0	8.7	5.8	11.1	23.7	15.49
VMI	41.8	36.4	37.1	22.0	19.6	29.9	27.3	30.59
ANDA	43.9	43.1	43.8	26.2	35.6	36.7	27.6	36.70
PGN	65.6	59.1	57.9	37.7	25.5	49.5	37.1	47.49
FASA	84.1	79.1	77.2	57.8	45.3	72.0	46.6	66.01

	视觉基础模型CLIF	P的攻击成功率
--	------------	---------

	Inc-v3	Res-50	VGG16	Dense121	Avg.
Attack		=	>CLIP(ViT-	L/14)	
VMI	43.4	41.9	39.6	49.0	43.48
ANDA	43.7	53.1	43.7	54.9	48.85
PGN	49.2	50.0	45.4	62.9	51.88
FASA	58.6	59.6	51.2	70.6	60.00

结论:

- 1. 同时增加数据空间与模型空间中的平坦度, 有助于进一步对抗样本的迁移能力;
- 2.理论上,直接证明了添加平坦正则项可以提升迁移性,实验上,通过对22个黑盒模型
- 进行实验,说明了平坦度引导的FASA具有SOTA的性能

▶ 对抗子空间采样样本性能

Victim Model	Input Image	True Label	Model Output
		Holster	The image depicts a paintbrush , but the bristles appear to blend into the face or eyes.
🔶 Gemini	T	Prison house	The image is a close-up of a man's face . The man has his head bowed and his expression is difficult to discern.
R Cambrian		Carbonara	The image depicts a close-up view of a vibrant and colorful sculpture.
		Thatch	The image is a blurry photograph of a living room with a large, blurry image of a cat on the wall.

(a) Facial shape perturbations

(b) Word shape perturbations

面向更有挑战的有目标攻击任务,实现生成内容可控的对抗攻击

- ▶ 不同架构模型, 在正确标签上的决策边界"对齐"得较好;
- ▶ 错误标签上"对齐"欠佳,简单的模型集成无法有效解决有目标攻击难题。

面向更有挑战的有目标攻击任务,实现生成内容可控的对抗攻击

提出隐式集成攻击(Implicit Ensemble Attack, IEA),通过对单一替代模型参数进行滤波以提高模型 平滑性,引导优化过程向平坦区域收敛,实现在有目标攻击任务上的对抗样本黑盒迁移能力。

构建低通滤波优化目标,求解对抗样本 x_{adv}

 $\min_{x_{adv}} \int L(f(\theta - z, x_{adv}), y) K(z) dz$

计算隐式集成梯度Δ $\Delta = \nabla_{x_{adv}} \int L(f(\theta - z, x_{adv}), y)K(z)dz$ $= \mathbb{E}_{Z \sim K} [\nabla_{x_{adv}} L(f(\theta - Z, x_{adv}), y)]$

面向更有挑战的有目标攻击任务,实现生成内容可控的对抗攻击

 提出隐式集成攻击(Implicit Ensemble Attack, IEA),通过对单一替代模型参数进行滤波以提高模型 平滑性,引导优化过程向平坦区域收敛,实现在有目标攻击任务上的对抗样本黑盒迁移能力。

隐式集成攻击 (IEA) 跨模型架构攻击框架

▶ 不同黑盒模型上有目标攻击成功率 (数据增强)

Surrogate	Mathad	CNN							Vi	Т	ViT						
Surrogate	Method	ResNet50	VGG16	Inc-v3	Dense121	BiT-101	ViT-B	DeiT-B	Swin-B	PiT-B	B LeViT	ConViT	Average				
	SI-FGSM	100.0*	2.2	0.9	8.9	0.7	0.0	0.1	0.0	0.0	0.2	0.0	1.3				
ResNet50	Admix-FGSM	100.0*	4.3	1.1	13.6	1.1	0.0	0.2	0.0	0.0	0.5	0.0	2.1				
	S^2 I-FGSM	100.0*	17.7	3.7	25.7	3.0	0.3	0.3	0.3	0.6	1.7	0.4	5.4				
	IE-FGSM(Ours)	99.8*	41.9	2.1	65.5	14.3	0.4	1.1	1.4	2.6	1.4	1.6	13.2				
	DTMI	100.0*	12.8	8.3	38.8	5.0	0.2	1.1	0.4	2.4	2.4	0.9	7.2				
	Admix-DTMI	100.0*	20.5	27.5	67.8	11.7	2.8	3.6	1.4	4.7	10.6	3.9	15.5				
	S ² I-DTMI	99.9*	46.7	44.0	79.5	18.2	7.4	8.8	2.1	10.7	17.0	7.9	24.2				
	SU-DTMI	100.0*	51.8	7.5	45.3	9.7	0.7	1.8	1.1	3.2	5.2	1.1	12.7				
	IEA(Ours)	100.0*	94.0	67.2	97.9	70.3	19.9	39.6	25.2	52.0	52.6	39.5	55.8				
	SI-FGSM	6.3	1.4	0.6	100.0*	0.3	0.0	0.0	0.0	0.3	0.1	0.0	0.9				
	Admix-FGSM	9.2	3.8	1.8	100.0*	0.8	0.1	0.3	0.4	0.0	0.5	0.1	1.7				
	S^2 I-FGSM	29.4	14.7	3.9	100.0*	2.5	0.3	0.6	0.4	1.3	1.1	0.2	5.4				
	IE-FGSM(Ours)	81.2	63.0	7.4	100.0*	24.3	1.1	3.6	3.3	6.7	4.6	3.4	19.9				
Dense121	DTMI	13.9	5.0	4.4	100.0*	2.8	0.3	0.5	0.2	1.0	1.9	0.3	3.0				
	Admix-DTMI	32.4	11.4	17.6	100.0*	5.5	2.7	2.5	0.6	3.5	6.1	2.8	8.5				
	S ² I-DTMI	52.3	25.1	30.1	100.0*	9.8	4.3	4.8	0.9	5.7	11.5	3.3	14.8				
	SU-DTMI	38.8	44.6	8.5	100.0*	9.5	1.3	1.7	1.0	2.6	4.5	1.4	11.4				
	IEA(Ours)	94.8	84.5	59.8	100.0*	55.9	16.7	35.3	19.4	39.8	47.2	33.2	48.7				

▶ 不同黑盒模型上有目标攻击成功率 (集成模型)

Malal	CNN						ViT							
Method	ResNet50	VGG16	Inc-v3	Dense121	BiT-101	ViT-B	DeiT-B	8 Swin-B	PiT-B	Le-ViT	ConViT	Average		
Ensemble	2.5	0.6	99.5*	1.4	0.3	0.2	1.1	0	0.3	0.2	0.2	0.6		
IE-Ensemble(Ours)	28.9	19.6	98.8^{*}	31.0	2.9	0.5	2.0	0.5	1.9	2.7	1.6	7.4		
SVRE	2.7	0.9	98.6*	2.2	0.2	0.1	0.2	0.1	0.2	0.2	0	0.5		
IE-SVRE(Ours)	29.9	19.7	91.0*	30.3	3.7	0.4	2.2	0.6	2.2	3.6	3.2	7.7		
AdaEA	0.6	0.2	8.9*	0.4	0.1	0.2	3.0	0	0.2	0.3	1.6	0.7		
IE-AdaEA(Ours)	4.8	5.6	67.1*	6.2	1.5	15.4	21.3	2.0	2.7	10.9	17.9	10.6		

▶ 不同黑盒模型上有目标攻击成功率 (替代模型)

Method		CNN						ViT							
	ResNet50	VGG16	Inc-v3	Dense121	BiT-101	ViT-B	DeiT-B	Swin-E	B PiT-B	LeViT	ConViT	Average			
SGM	100.0*	2.8	1.2	5.8	1.1	0.1	0.5	0.3	1.1	1.1	0.8	1.5			
SRM	-	59.4	50.8	78.8	-	8.6	-	-	-	-	-	-			
IAA	99.6*	76.2	27.0	88.5	36.5	8.5	12.5	8.5	20.4	17.9	12.3	30.8			
LGV	99.8*	90.5	72.3	99.5	46.0	9.7	25.1	10.5	30.4	56.0	26.9	46.7			
IEA	100.0*	94.0	67.2	97.9	70.3	19.9	39.6	25.2	52.0	52.6	39.5	55.8			

结论:

- 平滑替代模型的损失曲面,可极大地提高对 抗样本的迁移能力, IEA方法在CNN和ViT 模型上的效果显著提升;
- 在更困难的黑盒有目标攻击中,相较于三类 基线方法,成功率分别提升了27.1%、8.0% 和9.1%。

> 有目标攻击场景下,生成对抗样本处于不同黑盒受害模型损失曲面更平坦的区域,且损失值更低

		Inc-v3		VGG16		ViT-B		DeiT-B				
	10.	castle		castle		castle		castle				
c	A BAR AND	palace		monastery		palace		palace				
lea		monastery		triumphal arch		monastery		monastery				
S		fountain		palace		triumphal arch		vault				
		triumphal arch		vault		prison		prison				
	L	solar thermal collector		solar thermal collector		castle		castle				
~	SSA SSA	jigsaw puzzle		jigsaw puzzle		dome		palace				
SS/		umbrella		stupa		palace		monastery				
0)		cicada		shield		vault		ruffed grouse				
	The seal	planetarium		dome		triumphal arch		armadillo				
	1	solar thermal collector	1	solar thermal collector		castle		castle				
	atta	balloon		balloon		jigsaw puzzle		palace				
ЗС		radio telescope		radio telescope		palace		monastery				
•,		castle		jigsaw puzzle		dome		solar thermal collector				
	1 1 - Carlos and a second	parachute		planetarium		suspension bridge		church				
	L	solar thermal collector		solar thermal collector		castle		castle				
	. Bill and	jay		jigsaw puzzle		jigsaw puzzle		palace				
ΰ		hornbill		radio telescope		palace		peacock				
_		Chihuahua		honeycomb		analog clock		brass				
		hen		alp		maze		sundial				
	1	solar thermal collector		solar thermal collector		solar thermal collector		solar thermal collector				
	. Hill ada	Chihuahua		radio telescope		jigsaw puzzle		castle				
БA		jigsaw puzzle		planetarium		castle		church				
_		planetarium		dome		dome		monastery				
		radio telescope		sundial		radio telescope		bell-cot				

≻ 有目标攻击在不同黑盒模型上的top5概率

▶ 有目标攻击在不同黑盒模型上的注意力图

sferability via Implicit Ensemble (TNNLS submitted)

CONTENTS

2 迁移攻击

3 总结展望

- [1] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. Intriguing properties of neural networks. In 2nd International Conference on Learning Representations, ICLR 2014, 2014.
- [2]Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial examples. In Bengio, Y. and LeCun, Y. (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6572.
- [3]Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533, 2016.
- Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. Towards deep learning models resistant to adversarial attacks. In International Conference on Learning Representations, 2018
- [4]Dong, Y., Liao, F., Pang, T., Su, H., Zhu, J., Hu, X., and Li, J. Boosting adversarial attacks with momentum. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 9185–9193, 2018.
- [5]Lin, J., Song, C., He, K., Wang, L., and Hopcroft, J. E. Nesterov accelerated gradient and scale invariance for adversarial attacks. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. penReview.net, 2020. URL https: //openreview.net/forum?id=SJIHwkBYDH.
- [6]Wang, X. and He, K. Enhancing the transferability of adversarial attacks through variance tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1924–1933, 2021.
- [7]Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu Wang, Zhou Ren, and Alan L Yuille. Improving transferability of adversarial examples with input diversity. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2730–2739, 2019
- [8] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transferable adver- sarial examples by translation-invariant attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4312–4321, 2019.
- [9]Xiong Y, Lin J, Zhang M, et al. Stochastic variance reduced ensemble adversarial attack for boosting the adversarial transferability[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 14983-14992.
- [10]Fang Z, Wang R, Huang T, et al. Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 24841-24850.

BEIJING JIAOTONG UNIVERSITY

谢谢大家! Q & A

