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n 智能技术在关键领域应用的深度和广度不断增加

智能化时代AI安全的紧迫性

自动驾驶 航空航天

金融交易交通监控 司法取证 医疗诊断

轨道异常检测无人货物运输

AI模型的安全性是智能化技术在关键领域落地的“最后一公里”
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n 对抗样本横跨数字-物理空间，对关键领域AI应用形成实质威胁
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Figure 4: Examples of successful impersonation and dodging attacks. Fig. (a) shows SA (top) and SB (bottom) dodging
against DNNB . Fig. (b)–(d) show impersonations. Impersonators carrying out the attack are shown in the top row and
corresponding impersonation targets in the bottom row. Fig. (b) shows SA impersonating Milla Jovovich (by Georges Biard;
source: https://goo.gl/GlsWlC); (c) SB impersonating SC ; and (d) SC impersonating Carson Daly (by Anthony Quintano;
source: https://goo.gl/VfnDct).

Figure 5: The eyeglass frames used by SC for dodging recog-
nition against DNNB .

postors) never occurs, while true acceptance remains high.
Following a similar procedure, we found that a threshold of
0.90 achieved a reasonable tradeo↵ between security and us-
ability for DNNC ; the true acceptance rate became 92.01%
and the false acceptance rate became 4e�3. Attempting
to decrease the false acceptance rate to 0 reduced the true
acceptance rate to 41.42%, making the FRS unusable.

Using thresholds changes the definition of successful im-
personation: to successfully impersonate the target t, the
probability assigned to ct must exceed the threshold. Eval-
uating the previous impersonation attempts under this def-
inition, we found that success rates generally decreased but
remained high enough for the impersonations to be consid-
ered a real threat (see Table 2). For example, SB ’s success
rate when attempting to fool DNNB and impersonate SC

decreased from 88.00% without threshold to 75.00% when
using a threshold.

Time Complexity The DNNs we use in this work are
large, e.g., the number of connections in DNNB , the small-
est DNN, is about 3.86e8. Thus, the main overhead when
solving the optimization problem via GD is computing the
derivatives of the DNNs with respect to the input images.
For NI images used in the optimizations and NC connec-
tions in the DNN, the time complexity of each GD iteration
is O(NI ⇤NC). In practice, when using about 30 images, one
iteration of GD on a MacBook Pro (equipped with 16GB of
memory and a 2.2GHz Intel i7 CPU) takes about 52.72 sec-
onds. Hence, running the optimization up to 300 iterations
may take about 4.39 hours.

6. EXTENSION TO BLACK-BOX MODELS
So far we have examined attacks where the adversary has

access to the model she is trying to deceive. In general,
previous work on fooling ML systems has assumed knowl-
edge of the architecture of the system (see Sec. 2). In this
section we demonstrate how similar attacks can be applied
in a black-box scenario. In such a scenario, the adversary
would typically have access only to an oracle O which out-
puts a result for a given input and allows a limited number of
queries. The threat model we consider here is one in which
the adversary has access only to the oracle.
We next briefly describe a commercial FRS that we use in

our experiments (Sec. 6.1), and then describe and evaluate
preliminary attempts to carry out impersonation attacks in
a black-box setting (Sec. 6.2–6.3).

6.1 Face++: A Commercial FRS
Face++ is a cross-platform commercial state-of-the-art

FRS that is widely used by applications for facial recog-
nition, detection, tracking, and analysis [46]. It has been
shown to achieve accuracy over 97.3% on LFW [8]. Face++
allows users to upload training images and labels and trains
an FRS that can be queried by applications. Given an im-
age, the output from Face++ is the top three most proba-
ble classes of the image along with their confidence scores.
Face++ is marketed as“face recognition in the cloud.” Users
have no access to the internals of the training process and
the model used, nor even to a precise explanation of the
meaning of the confidence scores. Face++ is rate-limited to
50,000 free queries per month per user.
To train the Face++ model, we used the same training

data used for DNNB in Sec. 4.1 to create a 10-class FRS.

6.2 Impersonation Attacks on Face++
The goal of our black-box attack is for an adversary to

alter an image to which she has access so that it is mis-
classified. We attempted dodging attacks with randomly
colored glasses and found that it worked immediately for
several images. Therefore, in this section we focus on the
problem of impersonation from a given source to a target .
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安全相关的典型任务与挑战

n 对抗样本可实现跨模型架构迁移

战斗机

乌云

CNN [2012] ViT [2020]

CLIP [2021] DINOv2 [2023]
对抗样本

干净样本

图像分类

视觉表示学习模型能力不断提升，对抗性安全脆弱性依然存在



CLIP模型 Google Cloud Vision 线上API SAM模型线上API

ImageNet -> Non-ImageNet
预训练模型迁移攻击

ECCV 2024 Submission #2754 11

Fig. 6: The prediction results of Google Cloud Vision fooled to the specific target class
by adversarial examples generated by IEA.未知训练数据模型黑盒攻击

真实系统 -> 真实攻击

n 对抗样本可实现跨数据域、跨场景迁移

对抗样本迁移性



安全相关的典型任务与挑战

n 对抗样本跨学习任务普遍存在

视觉问答

目标检测

对话助手

普遍存在的对抗样本引发广泛的安全威胁，目前没有十分有效的防御方法

交互式分割 生成式大模型

涌现出新安全目标：“对齐”



社会广泛关注

2019年 4月
《可信赖人工智能
伦理准则》

2019年 9月
《新一代人工智能
伦理规范》

2020年 5月
《生成人工智能网
络安全法案》

2023年 10月
《关于人工智能安全、可靠和值得信
赖开发和使用的行政命令》

2023年 10月
《全球人工智能治
理倡议》

2024年 5月
《人工智能法》

2024年 1月
《人工智能 — 功能安全和AI
系统》

各国政府与社会高度关注AI安全，对抗攻击研究具有重要的研究意义和应用价值！

• 2023年首届全球人工智能安全峰会，包括中、美在内的28个国家共同签署了《布莱切利宣言》

• 2024年第二届全球人工智能安全峰会，27个国家签署《首尔宣言》，16家领先大模型公司共同签署

《前沿人工智能安全承诺》

• 2024年6月20日，OpenAI 前首席科学家 Ilya Sutskever声明创立「安全超级智能」（Safe 

SuperIntelligence，SSI）。该公司的目标和产品非常明确、单一：追求安全的超级智能
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对抗样本迁移性研究发展十年 

对抗样本研究受到学界广泛关注：
顶尖学者不断推动深度模型在鲁棒性
性和安全性方面的持续进步。

Samy Bengio
Apple

Ian Goodfellow
DeepMind

朱军
清华大学

何琨
华科大

对抗样本相关论文累计数量

国内学者：

… …

国外学者：

——优化算法引导
——输入数据增强
——替代模型优选

陈恺
中科院信工所

Nicholas Carlini
DeepMind



 基本迭代方法 (BIM/I-FGSM)
!!∗ = !,

对抗样本生成方法

输入 分类

反向传播

优化算法引导

替代模型优选输入数据增强

模型训练优化目标：

min! $ %, ', (
n !: 训练样本、": 真实标签、#: 模型参数、L: 损失函数 

生成对抗样本优化目标：

max"∗ $ %∗, ', (
n 微小扰动性: !∗ − ! " ≤ '. () = ∞, 2)

快速梯度符号算法（FGSM）

. !∗, ", # = . !, ", # + (!∗ − !) ⋅ 3# .(!, ", #)

!∗ = ! + ' ⋅ sign(3#.(!, ", #))

错误

正确



基本迭代方法 (BIM/I-FGSM)
%$∗ = %,

对抗样本的迁移性

干净样本

替代模型

对抗样本
生成算法

输入 分类

对抗样本 受害模型
错误, 迁移成功

正确, 迁移失败

沿符号梯度方向迭代，容易导致样本陷
入较差局部最大解并过拟合模型，限制
了对抗样本的跨模型迁移性。

如何确保对抗样本的迁移性？影响迁移性的核心因素是什么？
对抗样本依赖三要素（数据、模型、算法），其迁移性与学习泛化性紧密相关

[CVPR 2018，CVPR 2021, ICLR2020]



研究现状

n 输入数据引导的对抗攻击
数据增强可提升模型泛化能力，类似的，输入样本进行数据增强也可以提升对抗样本迁移性

其中T代表了数据增强操作，可以为随机裁剪、填充、 随机缩放、随机平移、随机图片插值等

• [ICML 18] EOT、 [CVPR 19] DIM、 [ICLR 19]SIM、[CVPR 19]TIM

• [CVPR 21] CTM、[ICCV 21]Admix、[ICCV 23]SIA、[ICLR 22] TAIG、[CVPR 23]PAM

数据引导的对抗样本生成方法通过增加数据多样性来提高对抗样本的迁移性，操作简便。
然而，该类方法需要为每个增强的样本单独计算梯度，产生了额外的计算成本。



n 优化算法引导的对抗攻击
BIM方法会导致陷入较差局部最大点并过拟合模型，该类方法采用收敛性质更好的优化算法以

逃离局部最大解。

其中A代表了优化算法，可以为动量加速、涅斯托洛夫加速、方差缩减、随机方差缩减、随机权

重平均高斯、梯度正则化等

研究现状

优化算法引导的对抗样本生成方法采用收敛性质更好的优化算法，确保生成过程更快收敛
并避免局部最优解，增强对不同模型的适应性。该类方法存在陷入尖锐解的风险。

• [CVPR 18] MIM、 [ICLR 19] NIM、 [CVPR 21] VMI、 [BMVC 21] EMI、

• [CVPR 22]SVRE、 [NIPS 22] RAP、[NIPS 23] PGN、[ICML 24] CosPGD、[CVPR 24] ANDA



n 替代模型引导的对抗攻击
损失景观更平坦的替代模型可以减少对抗样本对模型的过拟合。此类方法通过修改模型参

数，使其更加平滑。

其中M代表了替代模型相关操作：贝叶斯边际化、丢弃层、对抗训练、模型平均、模型自

蒸馏，跳跃链接。

研究现状

替代模型引导的生成方法通过修改模型结构或集成学习提升损失函数的平坦性，增强对抗样本
的迁移性。然而，这类方法需要较高的计算成本，对特定模块的依赖性强（例如残差连接）。

• [ICLR 19] SGM、[AAAI 20] GhostNet、 [ECCV 22] LGV

• [ICLR 23] MB、 [S&P 24] LittleRobust、[CVPR 24] SASD-WS



关键问题

对抗样本迁移性
关键问题：陷入局部最优，过拟合于替代模型

输入数据多样性

集成各种数据增强
样本以提升多样
性，普适性高

优化算法收敛性

增强优化轨迹的平坦度
（如引入正则项）以避
免陷入局部最大解

替代模型平坦度

修正替代模型（过滤手
段等），增强模型的平
坦度，计算资源消耗少

影响因素



渐进正态攻击

综合考虑输入数据与优化算法，设计了多重渐近正态分布攻击方法（Asymptotically Normal
Distribution Attack, MultiANDA），利用随机梯度上升的渐近正态性，通过采集优化轨迹信息，在增强
后的数据上估计混合高斯后验分布，捕获对抗样本的分布特性，进而提升对抗攻击的准确度。

实验验证迭代优化过程生成的对
抗噪声形成稳态分布，服从混合
高斯分布的对抗噪声。

Fang Z, Wang R, Huang T, et al. Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning[C]//Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 24841-24850.

干净图片样本➕微小对抗噪声

→ 对抗样本

如何估计该后验分布？



Ø 为了充分估计后验分布，我们引入数据增强增加轨迹信息:

Ø 计算增强扰动 ,%
(') :

Ø 计算平均值并存储梯度的偏差: (估计后验分布)

渐进正态攻击

Fang Z, Wang R, Huang T, et al. Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning[C]//Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 24841-24850.

后验混合高斯后验分布的刻画方法：

扰动可视化



渐进正态攻击

结论：1. 随机梯度上升的渐近正态分布能够有效近似对抗噪声的混合高斯后验分布
          2. MultiANDA表现优于十种针对深度学习模型的最先进的黑盒攻击（无论有无防御加固）

Ø 不同黑盒模型上的攻击成功率（防御模型）Ø 不同黑盒模型上的攻击成功率（标准模型）

实验结果

Fang Z, Wang R, Huang T, et al. Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning[C]//Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 24841-24850.



Ø 平坦度度量：

Ø 构建对抗子空间：

Ø 重建优化问题：

平坦对抗子空间攻击

MultiANDA从后验分布估计角度，刻画了鲁棒的对抗样本空间，是否可以直接学习对抗子空间？

利用单纯形构建对抗样本子空间，通过样本局部平坦性和损失函数全局平坦性的量化指标，设计高效的
平坦对抗子空间攻击(Flat Adversarial Subspace Attack, FASA)方法。

FASA对抗攻击示意图

Huang et al., Learning Flat Adversarial Subspace: A Data and Model Spaces Perspective (TPAMI submitted)



Ø 求解优化问题：

Ø 更新对抗样本：

Ø 理论证明

FASA与基准方法的损失Landscape可视化

平坦对抗子空间攻击

Huang et al., Learning Flat Adversarial Subspace: A Data and Model Spaces Perspective (TPAMI submitted)



Ø 干净数据训练模型的黑盒攻击成功率 Ø 防御模型的黑盒攻击成功率

Ø 视觉基础模型CLIP的攻击成功率

结论：
1. 同时增加数据空间与模型空间中的平坦度，有助于进一步对抗样本的迁移能力；
2.理论上，直接证明了添加平坦正则项可以提升迁移性，实验上，通过对22个黑盒模型
进行实验，说明了平坦度引导的FASA具有SOTA的性能

实验结果

Huang et al., Learning Flat Adversarial Subspace: A Data and Model Spaces Perspective (TPAMI submitted)

平坦对抗子空间攻击



Ø 对抗子空间采样样本性能 Ø 视觉语言大模型鲁棒性测评

实验结果

Huang et al., Learning Flat Adversarial Subspace: A Data and Model Spaces Perspective (TPAMI submitted)

平坦对抗子空间攻击



面向更有挑战的有目标攻击任务，实现生成内容可控的对抗攻击

Ø 不同架构模型，在正确标签上的决策边界“对齐”得较好；

Ø 错误标签上“对齐”欠佳，简单的模型集成无法有效解决有目标攻击难题。

隐式集成攻击 

Li et al., Enhancing Targeted Adversarial Transferability via Implicit Ensemble（TNNLS submitted）

Published as a conference paper at ICLR 2017

Figure 4: The decision boundary to sep-
arate the region within which all points
are classified as the ground truth label
(encircled by each closed curve) from
others. The plane is the same one de-
scribed in Figure 3. The origin of
the coordinate plane corresponds to the
original image. The units of both axises
are 1 pixel values.

Figure 5: The decision boundary to separate the
region within which all points are classified as the
target label (encircled by each closed curve) from
others. The plane is spanned by the targeted ad-
versarial direction and a random orthogonal di-
rection. The targeted adversarial direction is com-
puted as the difference between the original image
in Figure 2 and the adversarial image generated by
the optimization-based approach for an ensemble.
The ensemble contains all models except ResNet-
101. The origin of the coordinate plane corre-
sponds to the original image. The units of both
axises are 1 pixel values.

• The boundary diameters along the gradient direction is less than the ones along the ran-
dom direction. A potential reason is that moving a variable along its gradient direction
can change the loss function (i.e., the probability of the ground truth label) significantly.
Therefore along the gradient direction it will take fewer steps to move out of the ground
truth region than a random direction.

• An interesting finding is that even though we move left along the x-axis, which is equivalent
to maximizing the ground truth’s prediction probability, it also reaches the boundary much
sooner than moving along a random direction. We attribute this to the non-linearity of the
loss function: when the distortion is larger, the gradient direction also changes dramatically.
In this case, moving along the original gradient direction no longer increases the probability
to predict the ground truth label (see Figure 7 in the appendix).

• As for VGG-16 model, there is a small hole within the region corresponding to the ground
truth. This may partially explain why non-targeted adversarial images with small distortion
exist, but do not transfer well. This hole does not exist in other models’ decision planes. In
this case, non-targeted adversarial images in this hole do not transfer.

Decision boundaries of the targeted ensemble-based approaches. In addition, we choose the
targeted adversarial direction of the ensemble of all models except ResNet-101 and a random or-
thogonal direction, and we plot decision boundaries on the plane spanned by these two direction
vectors in Figure 5. We observe that the regions of images, which are predicted as the target label,
align well for the four models in the ensemble. However, for the model not used to generate the
adversarial image, i.e., ResNet-101, it also has a non-empty region such that the prediction is suc-
cessfully misled to the target label, although the area is much smaller. Meanwhile, the region within
each closed curve of the models almost has the same center.

7 REAL WORLD EXAMPLE: ADVERSARIAL EXAMPLES FOR CLARIFAI.COM

Clarifai.com is a commercial company providing state-of-the-art image classification services. We
have no knowledge about the dataset and types of models used behind Clarifai.com, except that we
have black-box access to the services. The labels returned from Clarifai.com are also different from

11

正确标签的决策边界 错误标签的决策边界

[Liu et al., ICLR 2017] [Chen et al., ICCV 2023]
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Ø 提出隐式集成攻击(Implicit Ensemble Attack, IEA) ，通过对单一替代模型参数进行滤波以提高模型
平滑性，引导优化过程向平坦区域收敛，实现在有目标攻击任务上的对抗样本黑盒迁移能力。
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隐式集成攻击（IEA）跨模型架构攻击框架
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Figure 1: The overview for IEA framework. The pipeline of the Implicit Ensemble Attack comprise of three key component in
adversarial examples generation: Input Data, Optimization Algorithm and Surrogate Model. We further leverage IEA to explore
the robustness of vision classifier, vision-language foundation models and large vision-language models.

loss function with the Gaussian filter K,

(L ⇤K)(✓?) =

Z 1

�1
L(f(✓? � z))K(z)dz, (5)

where the covariance matrix ⌃ 2 Rl⇥l is set as
diag(k✓1k, k✓2k, . . . , k✓lk), l denotes the total number of
components in the model, and � is the radius of the LPF.
Constructing the covariance matrix ⌃ in this way, propor-
tional to the norm of weights in each component, is benefi-
cial for realizing an adaptive LPF for a balanced modifica-
tion of the model weights. Note that component types may
vary for different deep learning architectures (e.g,. filters for
CNNs and attention heads for ViTs).

Furthermore, we formulate the optimization objective of
adversarial attacks, aiming at flattening the loss landscape of
the surrogate model f as characterized by Eq (5),

max
xadv

Z
L(f(✓? � z, xadv), y)K(z)dz. (6)

The integrated gradients of this loss function is

� = rxadv

Z
L(f(✓? � z, xadv), y)K(z)dz

= rxadvEZ⇠K [L(f(✓? � Z, xadv), y)]

= EZ⇠K [rxadvL(f(✓? � Z, xadv), y)] .

(7)

We then leverage classic yet efficient I-FGSM method to
solve this optimization problem as following:

xadv  ClipB✏(x){xadv + ↵ · sign(�)}. (8)

Due to the continuity of the distribution, it is not feasible
to calculate this integrated gradients directly. Practically, we
use the Monte Carlo (MC) method to sample M implicit

surrogate models within the neighboring weight space of the
selected surrogate model f(✓?),

F = {f1, f2, . . . , fM},
s.t. 8fi 2 {f(✓? � Z) | Z ⇠ N (0, �⌃)}. (9)

Obtaining the set of implicit surrogate models F , we ap-
proximate Eq (7) by averaging the loss gradients of this
model set F w.r.t the input xadv ,

� ⇡ 1

M

MX

i=1

rxadvL(fi(xadv), y). (10)

Notably, previous research (Zhao, Liu, and Larson 2021;
Long et al. 2022; Wei et al. 2023) has empirically shown
that input transformations can further improve the perfor-
mance of various transferable attacks. Meanwhile, a concur-
rent study (Zhang et al. 2024b) investigated the regulariza-
tion of surrogate models in both weight and input spaces,
concluding that they are highly complementary for transfer-
ability enhancement. Thus, we hypothesize that incorporat-
ing input transformations could further improve the perfor-
mance of our method, which primarily focuses on optimiz-
ing surrogate smoothness in the weight space. Thus, we in-
tegrate the input transformation into our proposed method,
as summarized in Algorithm 1. The schematic of IEA, along
with the comprehensive transferability evaluations across di-
verse contexts, is illustrated in Figure 1.

Experiments

Experimental Setup

Dataset. We experimented on the ImageNet-compatible
dataset for the NIPS 2017 Competition on Adversarial At-
tacks and Defense (Kurakin et al. 2018), consisting of 1,000
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Ø 提出隐式集成攻击(Implicit Ensemble Attack, IEA) ，通过对单一替代模型参数进行滤波以提高模型
平滑性，引导优化过程向平坦区域收敛，实现在有目标攻击任务上的对抗样本黑盒迁移能力。



Ø 不同黑盒模型上有目标攻击成功率（集成模型）

Ø 不同黑盒模型上有目标攻击成功率（替代模型）

结论：

1. 平滑替代模型的损失曲面，可极大地提高对
抗样本的迁移能力， IEA方法在CNN和ViT
模型上的效果显著提升；

2. 在更困难的黑盒有目标攻击中，相较于三类
基线方法，成功率分别提升了27.1%、8.0%
和9.1%。

Ø 不同黑盒模型上有目标攻击成功率（数据增强）

Li et al., Enhancing Targeted Adversarial Transferability via Implicit Ensemble（TNNLS submitted）

实验结果

隐式集成攻击 



Ø 有目标攻击场景下，生成对抗样本处于不同黑盒受害模型损失曲面更平坦的区域，且损失值更低

Li et al., Enhancing Targeted Adversarial Transferability via Implicit Ensemble（TNNLS submitted）

实验结果

隐式集成攻击 
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Ø 有目标攻击在不同黑盒模型上的注意力图
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Classify the content of this image by most 
probable appearance using the following template: 

"An image of [class] ".

An image of leafy vegetables. 

An image of plant. 

An image of a leafy green vegetable.

A close up of a head of cabbage.

Label: car, tire, 
rim

Target: cabbage

CleanAdv. image

Classify the content of this image by most 
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"An image of [class].
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Target: tiger
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Figure 3: Examples for attacking four LVLMs with specific target object. These LVLMs include GPT-4o, mPLUG-Owl2,
LLaVA and InstructBLIP (from top to bottom).
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LLaVA and InstructBLIP (from top to bottom).
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Ø 以简单CNN分类器（ResNet50）为替代模型生成的对抗样本，即可诱导最先进多模态大模型
输出任意指定回答
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